Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S145-S149, 2017 07.
Article in English | MEDLINE | ID: mdl-28452880

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are small stable RNAs that regulate translational degradation or repression of genes involved in brain trauma-mediated inflammation. More recently, miRNAs have emerged as potential novel TBI biomarkers. The aim of this study was to determine if a select set of miRNAs (miR-21, Let-7i, miR-124a, miR-146a, miR-107) that were previously associated with TBI models and clinical studies would be dysregulated and correlated to inflammatory cytokine abundance in the rat penetrating ballistic-like brain injury (PBBI) model. METHODS: Adult male Sprague-Dawley rats received a unilateral frontal 10% PBBI, which produces a temporary cavity. Sham animals received a craniotomy only. Ipsilateral brain tissue and serum were collected 4 hours to 7 days post-injury. Quantitation of miR-21, Let-7i, miR-124a, miR-146a, or miR-107 levels was conducted using Taqman PCR assays normalized to the endogenous reference, U6 snRNA. Brain tissue derived from matching cohorts was used to determine 1L-1beta and IL-6 levels by enzyme-linked immunosorbent assay. RESULTS: Brain tissue Let-7i and miR-21 increased at 4 hours and 1 day, whereas miR-124a and miR-107 were enhanced only 1 day post-injury. MiR-146a displayed a biphasic response and increased 1 day and 7 days, whereas elevation of miR-21 was sustained 1 day to 7 days after PBBI. Pathway analysis indicated that miRNAs were linked to inflammatory proteins, IL-6 and IL-1beta. Confirmation by enzyme-linked immunosorbent assay indicated that both cytokines were increased and peaked at 1 day, but fell at 3 days through 7 days after PBBI, indicating an inverse relationship with miRNA abundance. Serum Let-7i, alone, was differentially abundant 7 days after PBBI. CONCLUSION: Brain tissue-derived miRNAs linked to increased cytokine levels demonstrates a plausible therapeutic target of TBI-induced inflammation. Suppression of serum derived Let-7i may have utility as a biomarker of subacute injury progression or therapeutic responses.


Subject(s)
Cytokines/metabolism , Head Injuries, Penetrating/metabolism , MicroRNAs/metabolism , Animals , Biomarkers/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Military Medicine , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley
2.
PLoS One ; 11(7): e0158576, 2016.
Article in English | MEDLINE | ID: mdl-27428544

ABSTRACT

Traumatic brain injury (TBI) is an established risk factor for the development of Alzheimer's disease (AD). Here the effects of severe penetrating TBI on APP and tau cleavage processing were investigated in a rodent model of penetrating ballistic-like brain injury (PBBI). PBBI was induced by stereotactically inserting a perforated steel probe through the right frontal cortex of the anesthetized rat and rapidly inflating/deflating the probe's elastic tubing into an elliptical shaped balloon to 10% of total rat brain volume causing temporary cavitation injury. Separate animals underwent probe injury (PrI) alone without balloon inflation. Shams underwent craniectomy. Brain tissue was collected acutely (4h, 24h, 3d) and subacutely (7d) post-injury and analyzed by immunoblot for full length APP (APP-FL) and APP beta c-terminal fragments (ßCTFs), full length tau (tau-FL) and tau truncation fragments and at 7d for cytotoxic Beta amyloid (Aß) peptides Aß40 and Aß42 analysis. APP-FL was significantly decreased at 3d and 7d following PBBI whereas APP ßCTFs were significantly elevated by 4h post-injury and remained elevated through 7d post-injury. Effects on ßCTFs were mirrored with PrI, albeit to a lesser extent. Aß40 and Aß42 were significantly elevated at 7d following PBBI and PrI. Tau-FL decreased substantially 3d and 7d post-PBBI and PrI. Importantly, a 22 kDa tau fragment (tau22), similar to that found in AD, was significantly elevated by 4h and remained elevated through 7d post-injury. Thus both APP and tau cleavage was dramatically altered in the acute and subacute periods post-injury. As cleavage of these proteins has also been implicated in AD, TBI pathology shown here may set the stage for the later development of AD or other tauopathies.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Brain Injuries, Traumatic/metabolism , Brain/pathology , Head Injuries, Penetrating/metabolism , tau Proteins/metabolism , Amyloid beta-Protein Precursor/analysis , Animals , Brain/metabolism , Brain Injuries, Traumatic/pathology , Head Injuries, Penetrating/pathology , Male , Rats, Sprague-Dawley , tau Proteins/analysis
3.
J Neurotrauma ; 33(6): 538-52, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26670694

ABSTRACT

Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced enthusiasm for its further investigation in OBTT.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic , Erythropoietin/pharmacology , Neuroprotective Agents/pharmacology , Recovery of Function/drug effects , Animals , Disease Models, Animal , Glial Fibrillary Acidic Protein/blood , Male , Rats , Rats, Sprague-Dawley , Ubiquitin Thiolesterase/blood
4.
J Neurotrauma ; 33(6): 523-37, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26670792

ABSTRACT

Nicotinamide (vitamin B3) was the first drug selected for cross-model testing by the Operation Brain Trauma Therapy (OBTT) consortium based on a compelling record of positive results in pre-clinical models of traumatic brain injury (TBI). Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Nicotinamide (50 or 500 mg/kg) was delivered intravenously at 15 min and 24 h after injury with subsequent behavioral, biomarker, and histopathological outcome assessments. There was an intermediate effect on balance beam performance with the high (500 mg/kg) dose in the CCI model, but no significant therapeutic benefit was detected on any other motor task across the OBTT TBI models. There was an intermediate benefit on working memory with the high dose in the FPI model. A negative effect of the low (50 mg/kg) dose, however, was observed on cognitive outcome in the CCI model, and no cognitive improvement was observed in the PBBI model. Lesion volume analysis showed no treatment effects after either FPI or PBBI, but the high dose of nicotinamide resulted in significant tissue sparing in the CCI model. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-1 (UCH-L1) in blood at 4 or 24 h after injury. Negative effects (both doses) were detected on biomarker levels of GFAP after FPI and on biomarker levels of UCH-L1 after PBBI. The high dose of nicotinamide, however, reduced GFAP levels after both PBBI and CCI. Overall, our results showed a surprising lack of benefit from the low dose nicotinamide. In contrast, and partly in keeping with the literature, some benefit was achieved with the high dose. The marginal benefits achieved with nicotinamide, however, which appeared sporadically across the TBI models, has reduced enthusiasm for further investigation by the OBTT Consortium.


Subject(s)
Brain Injuries, Traumatic , Niacinamide/administration & dosage , Recovery of Function/drug effects , Vitamin B Complex/administration & dosage , Animals , Biomarkers/blood , Disease Models, Animal , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/blood , Male , Rats , Rats, Sprague-Dawley , Ubiquitin Thiolesterase/blood
5.
J Neurotrauma ; 33(6): 581-94, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26671550

ABSTRACT

Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.


Subject(s)
Brain Injuries, Traumatic , Nootropic Agents/pharmacology , Piracetam/analogs & derivatives , Recovery of Function/drug effects , Animals , Biomarkers/blood , Disease Models, Animal , Glial Fibrillary Acidic Protein/blood , Levetiracetam , Male , Piracetam/pharmacology , Rats , Rats, Sprague-Dawley , Ubiquitin Thiolesterase/blood
6.
J Neurotrauma ; 33(6): 595-605, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26671651

ABSTRACT

Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats--namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/blood , Glial Fibrillary Acidic Protein/blood , Ubiquitin Thiolesterase/blood , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Rats , Rats, Sprague-Dawley
7.
J Neurotrauma ; 33(1): 147-56, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-25789543

ABSTRACT

Acute traumatic brain injury (TBI) is associated with neurological dysfunction, changes in brain proteins, and increased serum biomarkers. However, the relationship between these brain proteins and serum biomarkers, and the ability of these serum biomarkers to indicate a neuroprotective/therapeutic response, remains elusive. Penetrating ballistic-like brain injury (PBBI) was used to systematically analyze several key TBI biomarkers, glial fibrillary acidic protein (GFAP) and its break-down products (BDPs)-ubiquitin C-terminal hydrolase-L1 (UCH-L1), α-II spectrin, and α-II spectrin BDPs (SBDPs)-in brain tissues and serum during an extended acute-subacute time-frame. In addition, neurological improvement and serum GFAP theranostic value was evaluated after neuroprotective treatment. In brain tissues, total GFAP increased more than three-fold 2 to 7 d after PBBI. However, this change was primarily due to GFAP-BDPs which increased to 2.7-4.8 arbitrary units (AU). Alpha-II spectrin was nearly ablated 3 d after PBBI, but somewhat recovered after 7 d. In conjunction with α-II spectrin loss, SBDP-145/150 increased approximately three-fold 2 to 7 d after PBBI (vs. sham, p<0.05). UCH-L1 protein levels were slightly decreased 7 d after PBBI but otherwise were unaffected. Serum GFAP was elevated by 3.2- to 8.8-fold at 2 to 4 h (vs. sham; p<0.05) and the 4 h increase was strongly correlated to 3 d GFAP-BDP abundance (r=0.66; p<0.05). Serum GFAP showed such a strong injury effect that it also was evaluated after therapeutic intervention with cyclosporin A (CsA). Administration of 2.5 mg/kg CsA significantly reduced serum GFAP elevation by 22.4-fold 2 h after PBBI (vs. PBBI+vehicle; p<0.05) and improved neurological function 1 d post-injury. Serum biomarkers, particularly GFAP, may be correlative tools of brain protein changes and feasible theranostic markers of TBI progression and recovery.


Subject(s)
Glial Fibrillary Acidic Protein/metabolism , Head Injuries, Penetrating/metabolism , Spectrin/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Biomarkers/blood , Disease Models, Animal , Glial Fibrillary Acidic Protein/blood , Head Injuries, Penetrating/blood , Male , Rats , Rats, Sprague-Dawley , Ubiquitin Thiolesterase/blood
8.
J Neurotrauma ; 33(6): 513-22, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26439468

ABSTRACT

Traumatic brain injury (TBI) was the signature injury in both the Iraq and Afghan wars and the magnitude of its importance in the civilian setting is finally being recognized. Given the scope of the problem, new therapies are needed across the continuum of care. Few therapies have been shown to be successful. In severe TBI, current guidelines-based acute therapies are focused on the reduction of intracranial hypertension and optimization of cerebral perfusion. One factor considered important to the failure of drug development and translation in TBI relates to the recognition that TBI is extremely heterogeneous and presents with multiple phenotypes even within the category of severe injury. To address this possibility and attempt to bring the most promising therapies to clinical trials, we developed Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug screening consortium for acute therapies in severe TBI. OBTT was developed to include a spectrum of established TBI models at experienced centers and assess the effect of promising therapies on both conventional outcomes and serum biomarker levels. In this review, we outline the approach to TBI modeling, evaluation of therapies, drug selection, and biomarker assessments for OBTT, and provide a framework for reports in this issue on the first five therapies evaluated by the consortium.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Drug Evaluation, Preclinical , Animals , Biomarkers , Disease Models, Animal , Humans
9.
Mol Cell Neurosci ; 60: 81-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24769105

ABSTRACT

OBJECTIVES: Brain edema is a primary factor in the morbidity and mortality of traumatic brain injury (TBI). The various isoforms of aquaporin 4 (AQP4) and aquaporin 9 (AQP9) are important factors influencing edema following TBI. Others have reported that these AQPs are regulated by the transcription factor hypoxia inducible factor (HIF) 1α. Therefore, we examined the temporal alterations in the multiple isoforms of AQP4 and AQP9, and its possible upstream regulation by HIF1α, and evaluated whether different severities of penetrating injury influence these mechanisms. METHODS: In the penetrating ballistic-like brain injury (PBBI) model, a temporary cavity and resultant injury was formed by the rapid inflation/deflation (i.e. <40ms) of an elastic balloon attached to the end of the custom probe, injuring 10% of total rat brain volume. Tissue from the ipsilateral core and perilesional injury zones was collected. Total RNA was isolated at 4, 12, and 24h, 3 and 7days post-injury (sham and PBBI, n=6 per group). cDNA was synthesized using oligodT primers. Quantitative real time PCR was performed using Taqman expression assays for aqp4 (recognizing all isoforms), aqp9, and hif1α. Using separate animals, tissue lysate was collected at 4 and 24h, 3 and 7days post-injury and analyzed by immunoblot for protein expression of multiple isoforms of AQP4, the single known isoform of AQP9 and for expression of transcription factor HIF1α (sham, probe only control, and PBBI, n=8-10 per group). RESULTS: Global aqp4 mRNA was decreased at 24h (p<0.01) with PBBI. Three of the four known protein isoforms of AQP4 were detected, M1 (34kDa), M23 (32kDa) and isoform 3 (30kDa). AQP4 M1 decreased at 3 and 7days post-injury (p<0.001; p<0.01). AQP4 M23 levels were highly variable with no significant changes. AQP4 isoform 3 levels were decreased 3days post-PBBI (p<0.05). From 4, 12, and 24h aqp9 mRNA levels were decreased with injury (p<0.01, p<0.05, p<0.01) while AQP9 levels were decreased at 3 and 7days after PBBI (p<0.001, p<0.01). At 12 and 24h post-PBBI hif1α mRNA levels increased (p<0.05, p<0.01) but at 3 and 7days mRNA levels decreased (p<0.05, p<0.01). From 24h and 3 and 7days HIF1α protein levels were decreased (p<0.0001, p<0.0001, p<0.0001). In comparison to probe control, PBBI led to greater decreases in protein for AQP4 M1 (trend), AQP4 isoform 3 (trend), AQP9 (p<0.05) and HIF1α (p<0.05). CONCLUSION: PBBI is characterized by a loss of AQP4 M1, AQP4 isoform 3 and AQP9 at delayed time-points. The severity of the injury (PBBI versus probe control) increased these effects. Therefore, AQP9 and the AQP4 M1 isoform may be regulated by HIF1α, but not AQP4 isoform 3. This delayed loss of aquaporins may markedly reduce the ability of the brain to efflux water, contributing to the protracted edema that is a characteristic following severe penetrating TBI. Factors contributing to edema differ with different types and severities of TBI. For example, cellular based edema is more prominent in diffuse non-penetrating TBI whereas vasogenic edema is more prevalent with TBI involving hemorrhage. Molecular regulation leading to edema will likely also differ, such that treatments which have been suggested for non-hemorrhagic moderate TBI, such as the suppression of aquaporins, may be detrimental in more severe forms of TBI.


Subject(s)
Aquaporin 4/metabolism , Aquaporins/metabolism , Brain Injuries/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Wounds, Gunshot/metabolism , Animals , Aquaporin 4/genetics , Aquaporins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
10.
Neuromolecular Med ; 15(3): 504-14, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23765588

ABSTRACT

The tripeptide glycine-proline-glutamate analogue NNZ-2566 (Neuren Pharmaceuticals) demonstrates neuroprotective efficacy in models of traumatic brain injury. In penetrating ballistic-like brain injury (PBBI), it significantly decreases injury-induced upregulation of inflammatory cytokines including TNF-α, IFN-γ, and IL-6. However, the mechanism by which NNZ-2566 acts has yet to be determined. The activating transcription factor-3 (ATF3) is known to repress expression of these inflammatory cytokines and was increased at the mRNA and protein level 24-h post-PBBI. This study investigated whether 12 h of NNZ-2566 treatment following PBBI alters atf3 expression. PBBI alone significantly increased atf3 mRNA levels by 13-fold at 12 h and these levels were increased by an additional fourfold with NNZ-2566 treatment. To confirm that changes in mRNA translated to changes in protein expression, ATF3 expression levels were determined in vivo in microglia/macrophages, T cells, natural killer cells (NKCs), astrocytes, and neurons. PBBI alone significantly increased ATF3 in microglia/macrophages (820%), NKCs (58%), and astrocytes (51%), but decreased levels in T cells (48%). NNZ-2566 treatment further increased ATF3 protein expression in microglia/macrophages (102%), NKCs (308%), and astrocytes (13%), while reversing ATF3 decreases in T cells. Finally, PBBI increased ATF3 levels by 55% in neurons and NNZ-2566 treatment further increased these levels an additional 33%. Since increased ATF3 may be an innate protective mechanism to limit inflammation following injury, these results demonstrating that the anti-inflammatory and neuroprotective drug NNZ-2566 increase both mRNA and protein levels of ATF3 in multiple cell types provide a cellular mechanism for NNZ-2566 modulation of neuroinflammation following PBBI.


Subject(s)
Activating Transcription Factor 3/biosynthesis , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Head Injuries, Penetrating/drug therapy , Nerve Tissue Proteins/biosynthesis , Neuroprotective Agents/therapeutic use , Oligopeptides/therapeutic use , Activating Transcription Factor 3/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Head Injuries, Penetrating/metabolism , Head Injuries, Penetrating/pathology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Oligopeptides/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Up-Regulation/drug effects
11.
J Mol Neurosci ; 49(2): 301-11, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22684621

ABSTRACT

We investigated apoptotic pathways in a model of severe traumatic brain injury, penetrating ballistic-like brain injury (PBBI). TUNEL staining identified increasing apoptosis within 24 h. From targeted arrays, 11 genes were identified for temporal mRNA evaluation. In addition, mRNA levels and enzyme activity for caspases 3, 8, and 9 were examined. In the death receptor-mediated apoptosis pathway, the relative quantities (RQs) of mRNA for tnfr1, fas, and tnf were upregulated while trail mRNA was downregulated. In the anti-apoptotic TNF-R2 pathway, tnfr2 and flip were upregulated while xiap was downregulated. These findings indicate that increases in tnf levels following injury are not only pro-apoptotic but may also signal competing anti-apoptotic mechanisms. For the mitochondria-mediated apoptosis pathway, RQs of anti-apoptotic factors bcl2a1d and birc3 were upregulated while both bcl2 and bax were downregulated. RQs for casp 3 and casp 8 increased while casp9 decreased. Enzymatic activity increased for caspases 3, 8, and 9. While multiple mechanisms promoting and inhibiting apoptosis are at play during the first week after a PBBI, the cumulative result remains increased apoptosis. The ability to understand and dissect these events will assist in the development and evaluation of treatments targeting apoptosis following severe brain injury.


Subject(s)
Apoptosis , Brain Injuries/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Brain Injuries/pathology , Disease Models, Animal , Male , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Transcription, Genetic , Wounds, Gunshot/metabolism , Wounds, Gunshot/pathology
12.
Front Neurol ; 3: 90, 2012.
Article in English | MEDLINE | ID: mdl-22701447

ABSTRACT

The conflicts in Iraq and Afghanistan have placed an increased awareness on traumatic brain injury (TBI). Various publications have estimated the incidence of TBI for our deployed servicemen, however all have been based on extrapolations of data sets or subjective evaluations due to our current method of diagnosing a TBI. Therefore it has been difficult to get an accurate rate and severity of deployment related TBIs, or the incidence of multiple TBIs our service members are experiencing. As such, there is a critical need to develop a rapid objective method to diagnose TBI on the battlefield. Because of the austere environment of the combat theater the ideal diagnostic platform faces numerous logistical constraints not encountered in civilian trauma centers. Consequently, a simple blood test to diagnosis TBI represents a viable option for the military. This perspective will provide information on some of the current options for TBI biomarkers, detail concerning battlefield constraints, and a possible acquisition strategy for the military. The end result is a non-invasive TBI diagnostic platform capable of providing much needed advances in objective triage capabilities and improved clinical management of in-Theater TBI.

13.
Mol Cell Proteomics ; 8(5): 924-35, 2009 May.
Article in English | MEDLINE | ID: mdl-19112181

ABSTRACT

Antibodies provide a sensitive indicator of proteins displayed by bacteria during sepsis. Because signals produced by infection are naturally amplified during the antibody response, host immunity can be used to identify biomarkers for proteins that are present at levels currently below detectable limits. We developed a microarray comprising approximately 70% of the 4066 proteins contained within the Yersinia pestis proteome to identify antibody biomarkers distinguishing plague from infections caused by other bacterial pathogens that may initially present similar clinical symptoms. We first examined rabbit antibodies produced against proteomes extracted from Y. pestis, Burkholderia mallei, Burkholderia cepecia, Burkholderia pseudomallei, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, and Escherichia coli, all pathogenic Gram-negative bacteria. These antibodies enabled detection of shared cross-reactive proteins, fingerprint proteins common for two or more bacteria, and signature proteins specific to each pathogen. Recognition by rabbit and non-human primate antibodies involved less than 100 of the thousands of proteins present within the Y. pestis proteome. Further antigen binding patterns were revealed that could distinguish plague from anthrax, caused by the Gram-positive bacterium Bacillus anthracis, using sera from acutely infected or convalescent primates. Thus, our results demonstrate potential biomarkers that are either specific to one strain or common to several species of pathogenic bacteria.


Subject(s)
Antibodies, Bacterial/immunology , Gram-Negative Bacteria/immunology , Gram-Negative Bacterial Infections/immunology , Protein Array Analysis , Proteome/analysis , Animals , Antibodies, Bacterial/metabolism , Antibody Formation/immunology , Bacterial Proteins/metabolism , Cross Reactions/immunology , Macaca mulatta/immunology , Macaca mulatta/microbiology , Plague/immunology , Protein Binding , Proteome/immunology , Rabbits , Yersinia pestis/immunology
14.
Hum Antibodies ; 15(4): 125-32, 2006.
Article in English | MEDLINE | ID: mdl-17522434

ABSTRACT

Antibodies serve as the gold standard in most immunodiagnostic assays. Recent advances in recombinant DNA technology have offered the production of antibody fragments or Fabs as promising alternatives. However, the lack of the Fc region of the antibody can be difficult in many standard diagnostic platforms. Therefore we sought to convert a murine Fab into a whole humanized IgG. The variable regions from an anti-botulinum Fab were cloned into human IgG heavy and light chain vectors and produced in myeloma cells. Purified humanized IgG demonstrated conversion to human IgG with no traces of mouse Fab as determined by Western blot analysis. In addition, the humanized IgG performed better as both a detection and capture reagent in an ELISA format and detected the botulinum toxoid at a lower concentration than the parental murine Fab. This technique offers the ability to convert various species of antibodies or antibody fragments into humanized antibodies with improved characteristics in immunodiagnostic assays, for use as human controls in serological assays, or for possible therapeutic benefit.


Subject(s)
Botulinum Toxins/analysis , Botulinum Toxins/immunology , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Animals , Biotechnology/methods , Botulism/diagnosis , Cell Line, Tumor , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , Genetic Vectors , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/genetics , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Species Specificity , Transfection
15.
Am J Physiol Gastrointest Liver Physiol ; 285(5): G796-803, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14561586

ABSTRACT

Cholesterol is necessary for the proper growth and development of the fetus. Consequently, disruptions in cholesterol biosynthesis lead to abnormal fetal development. It has been shown that in cells exposed to polyunsaturated fatty acids (PUFA), the expressions of genes and activities of enzymes involved in cholesterol synthesis are reduced. Similarly, we found that adult male hamsters fed PUFA-enriched diets had an approximately 60% reduction in in vivo hepatic sterol synthesis rates. If fetal tissues respond to PUFA in the same manner as do adult livers, then maternal dietary PUFA could lead to a reduction in fetal sterol synthesis rates and possibly abnormal development. To investigate the impact of maternal dietary fatty acids on fetal sterol synthesis rates, female hamsters were fed diets enriched in various fatty acids before and throughout gestation. In vivo sterol synthesis rates were measured in fetuses at mid- and late gestation. At both gestational stages, dietary PUFA had no effect on fetal sterol synthesis rates. This lack of effect was not a consequence of a lack of PUFA enrichment in fetal fatty acids or the lack of PUFA receptor expression in the fetus. We hypothesize that the fetus may experience a dysregulation of sterol synthesis as the result of the fetus being in a negative sterol balance; the PUFA-induced suppression of sterol synthesis in the adult male hamster liver was ablated by creating a net negative sterol balance across the adult hepatocyte.


Subject(s)
Fatty Acids, Unsaturated/pharmacology , Fetus/metabolism , Pregnancy, Animal/metabolism , Sterols/biosynthesis , Animals , Cricetinae , Diet , Fatty Acids, Unsaturated/administration & dosage , Female , Gestational Age , Male , Pregnancy
16.
J Lipid Res ; 44(10): 1909-18, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12897187

ABSTRACT

The placental transport of various compounds, such as glucose and fatty acids, has been well studied. However, the transport of cholesterol, a sterol essential for proper fetal development, remains undefined in the placenta. Therefore, the purpose of these studies was to examine the transport of cholesterol across a placental monolayer and its uptake by various cholesterol acceptors. BeWo cells, which originated from a human choriocarcinoma, were grown on transwells for 3 days to form a confluent monolayer. The apical side of the cells was radiolabeled with either free cholesterol or LDL cholesteryl ester. After 24 h, the radiolabel was removed and cholesterol acceptors were added to the basolateral chamber. Cholesterol was found to be taken up by the apical surface of the placental monolayer, transported to the basolateral surface of the cell, and effluxed to fetal human serum, fetal HDL, or phospholipid vesicles, but not to apolipoprotein A-I. In addition, increasing the cellular cholesterol concentration further increased the amount of cholesterol transported to the basolateral acceptors. These are the first studies to demonstrate the movement of cholesterol across a placental cell from the maternal circulation (apical side) to the fetal circulation (basolateral side).


Subject(s)
Cholesterol/metabolism , Fetus/metabolism , Maternal-Fetal Exchange , Placenta/metabolism , Apolipoprotein A-I/metabolism , Biological Transport, Active , Cell Line, Tumor , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Choriocarcinoma , Fatty Acids/metabolism , Female , Humans , Isotope Labeling/methods , Phospholipids/metabolism , Pregnancy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...